Quasiparticle interference on the surface of the topological crystalline insulator Pb 1 − x Sn x
نویسندگان
چکیده
Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase, which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1−xSnxSe in the topologically nontrivial (x = 0.23) and topologically trivial (x = 0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77Sn0.23Se and PbSe have different topological nature.
منابع مشابه
Observation of a topological crystalline insulator phase and topological phase transition in Pb(1-x)Sn(x)Te.
A topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction-driven band inversion. The topological phase in the Bi(1-x)Sb(x) system is due to an odd number of band inversions. A related spin-orbit system, the Pb(1-x)Sn(x)Te, has long been known to contain an even number of inversions based on band theory. Here we experimentally investigate the possibility ...
متن کاملExperimental observation of Dirac-like surface states and topological phase transition in Pb(1-x)Sn(x)Te(111) films.
The surface of a topological crystalline insulator (TCI) carries an even number of Dirac cones protected by crystalline symmetry. We epitaxially grew high-quality Pb(1-x)Sn(x)Te(111) films and investigated the TCI phase by in situ angle-resolved photoemission spectroscopy. Pb(1-x)Sn(x)Te(111) films undergo a topological phase transition from a trivial insulator to TCI via increasing the Sn/Pb r...
متن کاملQuasiparticle Interference on the Surface of Topological Crystalline Insulator Pb1−xSnxSe
Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle res...
متن کاملDirect observation and temperature control of the surface Dirac gap in a topological crystalline insulator
Since the advent of topological insulators hosting Dirac surface states, efforts have been made to gap these states in a controllable way. A new route to accomplish this was opened up by the discovery of topological crystalline insulators where the topological states are protected by crystal symmetries and thus prone to gap formation by structural changes of the lattice. Here we show a temperat...
متن کاملIndium Substitution Effect on the Topological Crystalline Insulator Family (Pb1-xSnx)1-yInyTe: Topological and Superconducting Properties
Topological crystalline insulators (TCIs) have been of great interest in the area of condensed matter physics. We investigated the effect of indium substitution on the crystal structure and transport properties in the TCI system (Pb1−xSnx)1−yInyTe. For samples with a tin concentration x ≤ 50%, the low-temperature resisitivities show a dramatic variation as a function of indium concentration: wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013